If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25p^2-90=54
We move all terms to the left:
25p^2-90-(54)=0
We add all the numbers together, and all the variables
25p^2-144=0
a = 25; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·25·(-144)
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120}{2*25}=\frac{-120}{50} =-2+2/5 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120}{2*25}=\frac{120}{50} =2+2/5 $
| 2y/3=4y-40 | | 3000-75x=3750-150x | | 3s/5=6s-81 | | 2(3x+6)-4x=6-2x | | 6s^2-24=0 | | -111=3(-1-5x)-3x | | 3000+75x=3750-150x | | e/3=4e-66 | | q^2+18=0 | | (7/2a)=5a-3 | | t^2-64=-64 | | 3(2-x)=2x+31 | | c/4=6c-161 | | -7n-4(3n+3)=140 | | -3-(5)(3x+7)=0 | | x/3+(-5)=1 | | u^2=48 | | d/3=4d-55 | | g^2+95=16 | | 4(2x+-3)+12=4x+24 | | 3a-156=a/9 | | v^2+0=0 | | 5x+7.50=2750 | | a/5=3a-84 | | r^2=-14 | | -9q−-16q=7 | | -23p-76=p+956 | | -31-4x=-5-8(1+5x) | | 7x-6+5x+2=180 | | n-289=8n-23 | | k^2-67=-8 | | 7x-6+5x+2=90 |